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Abstract

Contests are ubiquitous but do not simply arise in a vacuum. Competitors make
conscious decisions before the fighting stage. This paper looks at the interplay be-
tween the decision to enter and then undertake a pre-contest investment to enhance
the chance of winning the prize. We use an all-pay auction to model the contest
stage; investment cost is private information and its return is stochastic. We char-
acterize equilibrium in terms of threshold strategies on the cost parameter, both
for the entry and the subsequent investment decision. We show that the stochastic
nature of the investment outcome has a non-monotonic effect on players decisions in
equilibrium. A contest designer can use our results to directly achieve goals related
to entry fee revenue and investment propensity. In both cases, we demonstrate that
limiting entry may be optimal.
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1 Introduction

A contest captures strategic interaction between rivals for a prize in which the costs of
actions to win are sunk. Examples come from many areas such as political science (e.g.
lobbying, armed conflict), economics (e.g. promotions or advertising campaigns) and
sports.1 Much literature assumes that a contest arises among a set of defined competitors
with certain characteristics. This paper examines the interplay between factors that
may affect actions in the contest prior to the fighting stage. First, we open for the
possibility that the set of participants is not known at the beginning of the competition.
Development of a novel technology for example often opens new market opportunities,
taking time before the set of participants is established. Second, entrants may be able
to undertake a pre-contest action that potentially improves the probability of winning
and/or the size of the prize. Third, the return to any such action may be uncertain.

We develop a tractable three-period model, involving entry, pre-contest investment
and then the actual contest. At the beginning, a fixed set of players are privately informed
of their marginal cost of making the pre-contest investment, and must decide whether or
not to enter the competition. Next, upon entry, they decide whether to invest in acquiring
an advantage which would create a favorable imbalance in the future contest. The return
to investment in advantage acquisition is uncertain. Finally, the set of entrants, some
of which have potentially acquired an advantage over their rivals, compete in an all-pay
auction to win the prize.

By analyzing a model that combines entry and pre-contest investment decisions, we
unite disparate strands of the contest literature. The interaction of these decisions appears
to have been little studied previously. Investment may enhance the size of a prize that
can be appropriated as in Konrad (2002)2, or reduce the cost of competing for the prize
(Fu and Lu, 2009 and Münster, 2007). Entry can occur exogenously as the result of
a pre-determined stochastic process (see among others Myerson and Wärneryd, 2006,
Münster, 2006, Lim and Matros, 2009 and Fu et al., 2011), or can be set endogenously
as part of the equilibrium strategy (for example Fu and Lu, 2010, Fu et al., 2015, Liu
and Lu, 2019, Jiao et al., 2022 and Kaplan and Sela, 2010). Some work has been done
on the disclosure or concealment of the set of entrants (Jiao et al., 2022), or whether the
investment decision is observable (taken simultaneously or sequentially as in Münster,
2007). We combine the approaches by considering endogenous, observable entry and
simultaneous investment decisions, the outcome of which is stochastic and observable.

Furthermore we explore how entry is affected by its cost. Kaplan and Sela (2010)
and Liu and Lu (2019) study an all-pay auction with an entry cost. Ability is common
knowledge and higher ability gives a reduced entry cost and effort cost in the former, while

1See Konrad (2009) for an overview of contest types and applications.
2Konrad (2002) only considers pre-contest investment by the incumbent.
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it is private information in the latter but does not affect the cost of entry. In common
with our approach, these papers derive a threshold strategy for entry into the contest.
Kaplan and Sela (2010) demonstrate that the contest may not be effective in the sense
that the probability of entry is not increasing in ability. To rectify this, they show that
the winner of the contest can be charged a fee, although this reduces the attractiveness
of entry for all competitors. Liu and Lu (2019) focus attention on the division of the
prize mass into different sizes, showing that a single winner-take-all prize is optimal if
the cost of effort is linear or concave. The first stage of the model is similar to the
contest entry game in Hammond et al. (2019), who analyze an all-pay auction between
players with different costs of effort that are private information. Assuming that the
entry fee augments the prize, they derive an elegant solution for the entry threshold and
total effort. In addition to deriving a threshold for entry, our analysis introduces further
uncertainty by considering which of the entrants that will make an ability-enhancing
investment before the actual contest is played.

Our findings demonstrate the complex interplay between entry and investment. In
making the entry decision, an agent is enticed by the potential value of the contest
prize, and upon entry weighs up the private cost of investment with its return. Even if
an investment is successful, actions at the contest stage may dissipate its return. The
exception is if an agent is the only one to succeed in its investment. Intuitively, contests
are hard fought between a sufficiently homogeneous group of competitors, but a single
strong player can dissuade rivals from making effort. This forms the incentive to enter and
to invest, and we show how this is critically determined by the relationship between the
number of agents and the probability of successful investment. Entry and investment are
least attractive when the probability of investment success is very high or low, since this
imparts a low expectation of being the single strong player (with a successful investment)
at the contest stage. Agents are more likely to enter and invest if the success probability
takes an intermediate value.

We show also that the entry cost acts as a mechanism to exclude less efficient agents
from entering the contest. A designer can effectively use the entry fee to exclude high-cost
agents, even though cost information is not freely available.3 Furthermore, we show how
the entry cost may be set in order to achieve a vested interest that the designer may have
such us maximizing entry revenue or the expected number of investing agents.

The rest of the paper is organized as follows. The basic model framework is presented
in Section 2, and Section 3 sets up the contest. Pre-contest investment decisions are
analyzed in Section 4, while Section 5 considers entry strategy. The significance of the
model parameters for the analysis is expounded in Section 6. Section 7 considers the

3In a similar vein, Fu et al. (2015) show that an effort-maximizing contest designer may wish to limit
participation in a Tullock contest with homogeneous participants with endogenous (and concealed),
costly entry.
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achievement of different goals by a contest designer, and Section 8 concludes. All proofs
are in Appendix A.

2 Model

Consider N ≥ 2 agents who can enter an all-pay auction by incurring an entry cost c > 0.
Denote the set of entrants by E, which has n ≤ N members. After entering, agents
can invest in acquiring an advantage that affects their valuation of the contest prize.
In this model, there are two equivalent ways of modeling how a successful investment
affects payoffs; one can either assume that successful agents have a lower marginal cost
of exerting effort in the contest, or that such an agent has a larger prize value.4 We
shall follow the latter interpretation, so that a successful agent has a value of winning
the contest of αv where α > 1 is common knowledge; the valuation of an unsuccessful or
non-investing agent is v. Agent i ∈ E has an investment cost of θi, where θi, i ∈ E are
independent random variables uniformly distributed over [0, 1]. The return to investment
is stochastic. The likelihood of success is q ∈ (0, 1), which is the same for every investor
and is common knowledge. Those who do not invest do not acquire the advantage. We
denote by m ≤ n the number of agents that realize a successful return.

The agents that enter the contest exert efforts, given by x = (x1, x2, ....., xn), in order
to win the contest prize. In an all-pay auction, the winner is the contestant with the
highest effort; if several agents have the same maximal effort, they each have an equal
probability of winning. Let W (x) = {j ∈ E | xj ≥ xz for every z ∈ E} represent the set
of agents that have maximal effort. The probability of agent i ∈ E winning the contest
is given by

pi(x) =


1

|W (x)| if i ∈ W (x)

0 otherwise.

The expected payoff of agent i ∈ E with prize V ∈ {v, αv} is

πi = pi(x)V − xi. (1)

The game proceeds follows:

• Stage 0: Nature chooses the type θi of agent i = 1, 2, . . . , N . The type of an agent
is private information.

• Stage 1 (Entry): Agent i ∈ {1, 2, . . . , N} decides whether to enter, after paying
the entry fee. The subset of entering agents is E with |E| = n as the number of

4See Vojnović (2015). In an early paper, Konrad (2002) considered an investment made by a single
agent – the incumbent – that increased the size of the prize that this agent and the single rival could
fight over. Our model permits investment by all agents, and its return accrues as a private benefit.
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entrants; n is public information. If n = 0, the game ends.

• Stage 2 (Investment): Agent i ∈ E decides whether to invest by incurring an
investment cost of θi. Then, nature decides whether an agent realizes a successful
investment. The number of agents that realize a successful return, m ≤ n, is public
information.

• Stage 3 (Contest): If n = 1, the sole entrant wins the prize. If n > 1, agents
participate in an all-pay auction to win the prize.

We study the perfect Bayesian equilibrium of the game in symmetric strategies.5

3 Contest stage

We begin our analysis at stage 3, where the number of entrants n and the number of
successful agents m are common knowledge. Denote the expected contest-stage payoff of
a successful agent by πs(n, m), and an unsuccessful one by πu(n, m).6 Let T (n, m) be the
total expected effort exerted in the contest.

If n = 1, there is no contest and the sole entrant wins the prize. The entrant’s payoff
is αv if its investment has paid off, and v if it did not invest, or if the investment failed.
We can therefore set πs(1, 1) = αv, πu(1, 0) = v, and T (1, 1) = T (1, 0) = 0.

Consider n ≥ 2 and m ∈ {0, 1, . . . , n}. Each agent chooses effort to maximize (1).
This is then a standard all-pay auction under complete information, which has been
extensively studied by Baye et al. (1996). We can use their results directly. There are
three cases to consider:7

Lemma 1. (Baye et al., 1996) Suppose that n ≥ 2.
(i) m = 0. Then πu(n, 0) = 0, T (n, 0) = v.
(ii) n ≥ m ≥ 2. Then πs(n, m) = πu(n, m) = 0, T (n, m) = αv.
(iii) m = 1. Then πs(n, 1) = (α − 1) v, πu(n, 1) = 0, and T (n, 1) ∈ [T min(n, 1), T max(n, 1)]

5Asymmetric equilibria can arise in endogenous–entry contests, where some potential entrants may
or may not enter regardless of circumstances, while others follow a threshold-based entry strategy. We
analyze the symmetric equilibrium, as it serves as a natural focal point in the absence of a clear coor-
dination mechanism, given that investment type is private information and all firms face identical entry
costs. Symmetric equilibria have also been the primary focus of the theoretical literature on contests
with endogenous entry; see Fu et al. (2015).

6At this stage, an agent may be “unsuccessful” because it did not invest or because it did invest but
not succeed. Whatever the source of this lack of success, any investment cost is sunk and this does not
affect payoffs at the contest stage.

7Cases (i) and (ii) use Theorem 1 in Baye et al. (1996), and case (iii) uses Theorem 2.
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where

T min(n, 1) = v

n

[
(n − 1)2 α2 − (2n − 1) (n − 1) α + n2 − (n − 1)2 (α − 1)

2n−1
n−1 α

−1
n−1

]
,

(2)

T max(n, 1) = α + 1
2α

v. (3)

In case (i), no agent has realized a successful investment, and all expect a payoff of
zero since they exert an expected amount of effort in aggregate that equals the value of
the prize. In case (ii), there are at least two successful agents and these exert efforts that
are expected to equal their prize value αv. Agents that have not acquired the investment
advantage do not exert effort, and all participants expect a payoff of zero. In both of
these cases, there are a continuum of equilibria, but Baye et al. (1996) show that they
all lead to the same expected total effort. A single successful agent - as in case (iii) -
will have a positive expected payoff equal to the difference in the prize between it and
a rival with that has not acquired the investment advantage. All unsuccessful agents
expect a payoff of zero. Again, there are a continuum of equilibria also in this case, but
they do not lead to the same amount of aggregate expected effort. T (n, 1) is minimized
when the unsuccessful agents all compete in the contest, using a symmetric strategy;
this leads to expected effort T min(n, 1). On the other hand, Baye et al. (1996) show
that T (n, 1) is maximized when all but one of the unsuccessful agents have an effort of
zero, yielding an expected effort of T max(n, 1). When n = 2, these equilibria coincide
since both imply that one successful agent competes with one unsuccessful rival, and
T (2, 1) = T min(2, 1) = T max(n, 1).

Because α > 1 > α+1
2α

, the principal always gets the lowest effort when there is exactly
one successful agent, and highest when there is more than one.

4 Investment

Consider stage 2, where the number of entrants n is common knowledge. The investment
strategy affects the number of successful players. An agent’s investment decision is con-
tingent on his type θ. If there are m − 1 ∈ {0, 1, . . . , n − 1} successful agents among the
other n − 1 rivals, the return to investment for an agent of type θ is q△ (n, m) − θ, where

△ (n, m) =πs (n, m) − πu (n, m − 1) .

An agent’s expected return to investment is qEm−1 (△ (n, m)) − θ, where the expectation
is taken over the probability distribution of (m − 1), the number of successful players
among (n − 1) competitors.

As investment success is a binary event in our model, the number of successful players
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follows a Binomial distribution. Specifically, (m − 1) ∼ Binomial (n − 1, κ) where κ is
the probability of finding a successful agent conditional upon entry. This probability κ

depends on the investment and entry strategies of the players.
Proposition 1 below shows that every agent’s optimal investment strategy is a thresh-

old strategy whenever all agents follow a threshold entry strategy. The intuition is
straightforward − conditional upon entry, every agent’s expected payoff is decreasing
in its own investment cost, and therefore investment pays off only if the cost is suffi-
ciently low. In this case, κ = qθI/θE, where θI ∈ [0, θE] and θE ∈ [0, 1] denote the
investment and entry thresholds respectively.

Given θE, we can derive the investment threshold from the investment-indifference
condition:

q

 n−1∑
m−1=0

(
n − 1
m − 1

)(
qθI

θE

)m−1 (
1 − qθI

θE

)n−m

△ (n, m)
− θI = 0. (4)

Among the (n − 1) rivals that the indifferent agent competes against, (m − 1) suc-
cessful agents can be drawn in

(
n−1
m−1

)
ways with the probability of each draw being

(qθI/θE)m−1 (1 − qθI/θE)n−m and the indifferent agent becomes the m-th successful agent
with probability q after incurring the investment cost θI .

Using Lemma 1, we find that

△ (n, m) =

(α − 1) v if m = 1

0 if m ≥ 2
,

which reduces (4) to

(α − 1) vq

(
1 − qθI

θE

)n−1

− θI = 0. (5)

The first term of (5) is the probability of a single agent being successful in a pool of n

entrants multiplied by the increment to the agent’s payoff in this case; it is easily verified
to be strictly decreasing and strictly convex in θI . The second term is the threshold
investment cost. There will be two possibilities. The left-hand-side of (5) is positive for
all θ ≤ θE; in this case, every agent with θ ≤ θE invests, and so we can set the investment
threshold θI = θE. Otherwise, the indifference condition (5) will have a unique solution
θI ≤ θE, which determines the investment threshold. Thus, the following possibilities can
arise in equilibrium.

• Full investment: For given θE and n, all entrants invest: θI = θE.

• Limited investment: For given θE and n, a subset of entrants invest: θI < θE.

The condition for full investment will be determined by the marginal entrant’s expected
return to investment. Denote the gross expected return to investment (without subtract-
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ing the investment cost) of an agent under full investment in an n−player contest by ξ (n)
where

ξ (n) := (α − 1) vq (1 − q)n−1 . (6)

It is straightforward to verify that ξ(n) is strictly decreasing in n. The following propo-
sition documents the equilibrium investment strategy for given θE and n.

Proposition 1. Fix θE, n, and suppose that all agents with type θ ≤ θE ≤ 1 enter. There
exists 0 < θI ≤ θE such that all agents with type θ ≤ θI invest in equilibrium.

1. If θE ≤ ξ (n), then θI = θE so that there is full investment.
2. If θE > ξ (n), then there is limited investment and the investment threshold θI

uniquely solves (5). The investment threshold θI weakly increases in θE, v and α. Further,
(θI/θE) strictly decreases in θE.

Whether all entrants invest or not depends critically on the value of ξ(n). For n ≥ 2
entrants, it follows from (6) that ξ(n) is the gross expected return to investment under
full investment. The regime of full investment is most likely when ξ(n) is high, i.e. when
α (the return to investment) or v (the contest prize) are high, and the number of entrants
(n) is low. The effect of the probability of successful investment (q) is ambiguous, since
ξ(n) is concave in this parameter, increasing for q ∈ (0, 1/n), and decreasing thereafter.
Relatively low or high values of the success probability depends also on the number of
entrants since ξ(n) is maximized at q = 1/n. When q is relatively low, it is unlikely that an
investing agent will succeed, but at the same time if it does succeed, it is likely to be alone;
in this case this agent expects πs(n, 1) = (α − 1) v at the contest stage by Proposition
1. A relatively high value of q makes it more likely than an investing agent will succeed,
but decreases the chances of being the sole successful agent at the contest stage. This
decreases the gross expected return of the investment. This nicely demonstrates the
interplay between the entry decision and the success probability in determining whether
all entrants invest or not.

Limited investment is most likely to occur if the expected return to investment at the
contest stage are low, i.e. low α and/or v, a high number of entrants and a probability
of investment success that deviates greatly from q = 1/n. The gross expected return
to investment under limited investment is θI , and this is weakly increasing in the prize
parameters associated with the contest stage (α, v).

Recall that c is the cost of entry. For given θE and n, let π (θ, n) denote the expected
payoff of an agent of type θ at the investment stage, given by:
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(a) In case of limited investment, i.e., when θE > ξ (n):

π (θ, n) =


θI − θ − c if θ ≤ θI < θE

−c if θI < θ ≤ θE

0 if θ > θE

. (7)

(b) In case of full investment, i.e., when θE ≤ ξ (n):

π (θ, n) =

ξ (n) − θ − c if θ ≤ θI = θE

0 if θ > θE

. (8)

For n = 1, the sole entrant invests if θ ≤ qv (α − 1) = ξ (1), and its expected payoff is
v + ξ (1) − θ − c if it invests, and is v − c if it doesn’t invest. Therefore,

π (θ, 1) =


v + ξ (1) − θ − c if θ ≤ min {θE, ξ (1)}

v − c if min {θE, ξ (1)} < θ ≤ θE

0 if θ > θE

. (9)

For n = 0, π (θ, 0) is set to zero.

5 Entry

Consider stage 1. An agent’s entry strategy is contingent on its type, which is private
information. From (7), (8), and (9), it follows that when there is at least one entrant
(n ≥ 1), the expected payoff of the marginal entrant of type θE is

π (θE, n) =



ξ (n) − θE − c if θE ≤ ξ (n)

−c if θE > ξ (n)
if n ≥ 2

v + ξ (1) − θE − c if θE ≤ ξ (1)

v − c if θE > ξ (1)
if n = 1

. (10)

For the marginal entrant who is indifferent between entry and no entry, the following
must hold:

En−1 [π (θE, n)] = ∑N−1
n−1=0

(
N−1
n−1

)
(θE)n−1 (1 − θE)N−n π (θE, n) = 0, (11)

where n − 1 ∽ Binomial (N − 1, θE). The expression in the entry-indifference condition
(11) is derived as follows. Among the (N − 1) rivals that the entry-indifferent agent with
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type θE competes against, n−1 ∈ {0, 1, . . . , N − 1} other entrants can be drawn in
(

N−1
n−1

)
ways and the probability of each draw is (θE)n−1 (1 − θE)N−n. In each of these draws,
the entry-indifferent agent receives an expected payoff of π (θE, n) after entering.

The following proposition shows that every agent will adopt a threshold strategy and
we formally prove that En−1 [π (θE, n)] is decreasing in θE. This observation implies that
two possibilities may arise. First, En−1 [π (θE, n)] is always positive for all θ ≤ 1; in this
case, all types enter, and we can set the entry threshold θE = 1. Second, the entry-
indifference condition (11) has a unique solution at θE < 1, which determines the entry
threshold. Thus, we observe the following two possible regimes in equilibrium:

• Full entry: All types of agents enter: θE = 1.

• Limited entry: A subset of agents enters: θE < 1.

The expected payoff of the agent of type θ = 1 determines the condition for full entry.
Observe that

En−1 [π (1, n)] = π (1, N) =

ξ (N) − 1 − c if 1 ≤ ξ (N)

−c if 1 > ξ (N)

= c (N) − c, (12)

where c (N) := max {ξ (N) − 1, 0} is the expected gross return of the agent with type θ =
1 under full investment and full entry. The following proposition formally characterizes
the equilibrium entry strategy.

Proposition 2. Fix N . There exists 0 < θE ≤ 1 such that all agents with type θ ≤ θE

enter.
1. If c ≤ c (N), then θE = 1 so that there is full entry.
2. If c > c (N), then there is limited entry and the entry threshold θE uniquely solves

(11). Further, θE increases in v and α.

From the entry and investment thresholds, we can fully characterize the distribution
of the number of entrants and the number of agents who succeed with an investment.
Specifically, n follows Binomial (N, θE) and m follows Binomial (n, qθI/θE).

Full entry is most likely to occur when ξ (N) is large and/or the entry cost (c) is
small; the former occurs when the rewards from the contest stage (α, v) are large and the
probability of investment success is at an intermediate value (i.e. close to q = 1/N). A
straightforward implication of Proposition 2 is that for a contest with an entry fee, full
investment occurs whenever there is full entry. This follows from the following observa-
tions. First, if 0 < c ≤ c (N), then c (N) > 0 and hence n = N . Further, c (N) > 0
implies that θE ≤ 1 < ξ(N) and by Proposition 1, we get θI = θE = 1, summed up in
Corollary 1:
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Corollary 1. If 0 < c ≤ c (N), then θI = θE = 1.

The intuition is as follows. If the full entry condition is satisfied, the marginal entrant
faces no uncertainty about the number of entrants. She will always compete against the
remaining N − 1 players in an all-pay auction. Since a player that does not realize a
successful investment receives zero payoff in the all-pay auction, the marginal entrant
can never recover its entry cost by not investing. Therefore, in the full-entry regime, the
marginal entrant, and consequently every entrant, is committed to invest.

Limited entry implies n ≤ N , occurring when c > c (N), and the investment threshold
depends on the realized value of n. The marginal entrant faces uncertainty regarding the
number of entrants at the entry stage. If it faces no competition upon entry, which
happens when it is the sole entrant, it expects to receive a positive payoff even if it has
not realized a successful investment. After entering, the entry cost becomes a sunk cost,
and the agent will only invest if the potential gain from investing is sufficient to recover
the investment cost. Limited investment can be observed alongside limited entry if ξ (n)
falls below the entry threshold θE for any given n. Because ξ (n) is decreasing in n, an
agent’s incentive to invest is reduced with the number of entrants.

The interplay between the uncertainty that arises from entry and that from investment
is complex. For a contest with an entry fee, full entry implies full investment, and that is
a clean result. Limited entry can give rise to both full investment and limited investment
in equilibrium. We explore this further in the next section.

6 Comparative statics

In this section, we discuss the comparative statics effects of some key parameters of our
model on entry and investment incentives.8

6.1 Likelihood of successful investment

The likelihood of success q has contrasting effects on incentives for investment and entry.
When q is high, an agent is more likely to succeed in investment, which favorably affects
the payoff from entry. However, this agent also anticipates competing against more agents
that have made a successful investment, which has a dampening effect. Typically, both
entry and investment incentives are high at an intermediate range of q, and this range is
concentrated around q = 1/N.

To see why, let us examine the full-entry condition: c ≤ c (N). Observe that ξ (N) is
concave for q ∈ [0, 1], is equal to zero at q = {0, 1}, and it increases with q for q < 1/N ,

8It is customary in contest models to focus attention on expected total effort. From Lemma (1) effort is
αv, in all cases except m = 0 (giving effort v) and m = 1 in which case it is

{
T min, T max

}
. Computing the

probabilities of the latter events requires closed-form solutions for the entry and investment thresholds,
and these we cannot calculate. Hence we focus on entry and investment incentives.

11



but decreases thereafter. Therefore, the full-entry condition can only be satisfied at an
intermediate level of q. We can hence find an interval

[
q, q

]
, 0 < q ≤ q < 1 such that[

q, q
]

= {q ∈ [0, 1] : c ≤ c (N)}. Further, this interval can be vacuous if maxq∈[0,1] ξ (N) <

1 + c, which holds if (N − 1)N−1 /NN < (1 + c)/v (α − 1). We state this formally:

Proposition 3. Fix N ≥ 2.
1. If (N − 1)N−1 /NN < (1 + c)/v (α − 1), there is limited entry in equilibrium for

every q ∈ [0, 1].
2. If (N − 1)N−1 /NN ≥ (1 + c)/v (α − 1), there exist 0 < q ≤ 1/N ≤ q < 1 such that

for q ∈
[
q, q

]
, there is full entry in equilibrium.

Part 2 indicates that when the contest is sufficiently favorable (high potential prize
value, a low entry cost and few potential competitors), all agents will enter if the success
probability balances the positive effect of achieving the advantage with the negative one of
meeting potentially strong rivals. When there is full entry, there is also full investment.
When the full-entry condition does not hold, the full-investment condition is given by
θE ≤ ξ (n), where n is the realized number of entrants. For given θE and n, it easily
follows from the shape of ξ (n) that the full-investment condition, if satisfied, only occurs
at an intermediate level of q.
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Figure 1: θE and θI against q for N = 3

Part 1 shows that when the contest is expected to be less favorable, then no value
of the investment success parameter will entice all agents to enter. This is intuitively
straightforward. However, it is less obvious how the thresholds θE and θI change in
relation to q in regimes with limited entry and limited investment.

Figures 1 and 2 illustrate how the two thresholds move against q. In Figure 1,
which plots θE and θI against q for N = 3, there is full entry in equilibrium when
q ∈ [0.169, 0.531]. Figure 2 plots the threshold for N = 5 and there is limited entry
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Figure 2: θE and θI against q for N = 5

for every q. These figures also plot θI , contingent on n ∈ {1, 2, . . . , N}. The invest-
ment threshold θI depends on the realized number of entrants. For q ∈ [0.169, 0.531],
ξ (3) > 1 + c, and we have full entry in equilibrium. However, since ξ (5) < 1 + c, for
N = 5, there is limited entry in equilibrium for every q.

6.2 Number of agents

The entry incentive weakly diminishes as the total number of agents N increases; this
follows from two observations. Firstly, the full-entry condition is satisfied for sufficiently
small values of N . Additionally, in cases of limited entry, the entry threshold decreases
as N increases. The following proposition documents formally how the entry threshold
changes with respect to N .

Proposition 4. Define N̄ := max {0, 1 + ⌊(ln (1 + c) − ln ((α − 1) vq)) / ln (1 − q)⌋},
where ⌊x⌋ is the largest integer less than or equal to x.
1. For N ≤ N̄ , θE (N) = 1.
2. For N > N̄ , θE (N) weakly decreases in N .

Part 1 is the familiar full-entry condition. Since N ≥ 2, full entry cannot occur if
N̄ < 2, which happens if then entry cost is very large: 1 + c > ξ (2); in this case, two
agents will not both find it profitable to enter, and full entry will certainly not occur
for additional agents. Entry is less attractive the more agents there are. To get the
intuition behind the result, consider from the perspective of the marginal entrant when
there are N players. The marginal entrant expects a positive payoff in two scenarios.
First, it might be the only entrant, and the expected post-entry payoff in this event
is v + max {0, ξ (1) − θE}. Second, there could be (n − 1) other entrants for various
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values of n, and the marginal entrant’s expected post-entry payoffs in these events are
max {0, ξ (n) − θE}. When the number of players increases by 1, the likelihood of the
first scenario decreases, and the payoffs associated with the second scenario decrease for
every n. Consequently, the marginal entrant’s expected post-entry payoff declines as N

increases.
Describing the impact of N on the investment threshold is more complex because the

threshold depends on the realized number of entrants, and the distribution of the number
of entrants changes as N moves. If we fix the number of entrants at a given n and examine
how changing N affects the investment threshold, we can infer from Proposition 1 that
θI will also decrease. This is because the two thresholds are positively related.
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Figure 3: θE and θI |n=N against N

Figure 3 numerically illustrates the relationship between the entry threshold (shown
as the blue-colored curve) and N . We also plot the investment threshold (shown as the
grey-colored curve) when all agents have entered (n = N); in this case the investment
threshold solves:

(α − 1) vq

(
1 − qθI

θE (N)

)N−1

− θI = 0. (13)

As N increases, it affects θI in two ways: first, by directly influencing the threshold that
solves (13), and second, by decreasing the entry threshold. Proposition 1 implies that
the second effect leads to a decline of the investment threshold. Furthermore, it can be
shown that the direct effect of N decreases θI .9

9The proof of this follows the technique used to show part 2 of Proposition 4, and is omitted here.
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6.3 Entry fee

An entry fee adversely affects the entry incentive. As with our analysis of the effects of
N , we can illustrate the dampening effect of c with two observations.

Firstly, the full-entry condition is satisfied only for sufficiently small values of c, specif-
ically, for c ≤ c (N). In addition, when there is limited entry, we can examine how θE

moves with respect to c by analyzing (11). Proposition 5 documents the effect of c on θE.

Proposition 5. For c ≤ c (N), θE = 1. For c > c (N), θE is strictly decreasing in c.

The mechanism behind this result is straightforward: entry fees directly reduce the
marginal entrant’s payoff in all possible scenarios, thereby dampening the incentive to
enter.

The monotone relationship between the entry fee and the entry threshold has impor-
tant implications for design problems. A contest designer can achieve her desired entry
threshold by adjusting the entry fee. For a given θE, let ĉ (θE) be the maximum level of
entry cost that results in an entry threshold equal to θE. Then we can prove the following
proposition.

Proposition 6. Any entry threshold θE ∈ [0, 1] can be implemented by choosing an entry
fee c = ĉ (θE). Furthermore, ĉ (θE) is continuous and differentiable.

7 Contest design

Contest models often purport the existence of a designer that sets various instruments
in the competition in order to achieve some objective. Given Proposition 6, an entry fee
may be one such instrument. Entry fees are sometimes charged in order to recoup the
expenses from running the contest, or to limit participation, especially by low-quality
agents. Taylor (1995) notes that the US Federal Communications Commission opened a
contest to design the technology standard for HD-TV, charging an entry fee of 200,000
USD. Competitions in music, writing, sports and architecture often charge an entry fee.
In 2023 the participation fees for the Eurovision song contest totaled 6.2 million Euros.10

We examine two distinct objectives pursued by the designer. In the first, the designer
maximizes the expected total entry fees received. In the second, the designer maximizes
the expected number of investors. The analyses below primarily focus on finding condi-
tions in which the designer prefers limited entry.

7.1 Total fees collected

The contest designer can extract surplus from the participants by charging an entry fee,
c, to maximize the expected value of the total fees received. As the number of entrants

10See Eurovision (2024).
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n follows Binomial (N, θE), the expected value of fees received is cE (n) = cNθE (c) for
a given c. The optimal choice of c, therefore, maximizes NcθE (c).

By replacing c by ĉ (θE), we can rewrite the optimization problem as a choice problem
over the possible entry threshold values. The designer’s preferred choice of θE maximizes
the expected value of fees collected, denoted by Vf :

Vf (θE) := Nĉ (θE) θE. (14)

Because of continuity and differentiability of ĉ (θE), Vf is continuous and differentiable
in θE. Therefore, if the optimization problem has an interior solution, this must satisfy
the first-order necessary condition:

ĉ (θE) + θE
dĉ (θE)

dθE

= 0.

In general, the objective function (14) can exhibit both concave and convex properties.
Proposition 7 outlines the sufficient condition under which limited entry is preferred.

Proposition 7. Consider a contest designer who maximizes the total fees received. If
c (N) = 0, then the designer prefers limited entry. If c (N) > 0, then a sufficient condition
for the designer to prefer limited entry is given by

ξ (N − 1) (1 − Nq) − 2 − v · 1{N=2} < 0, (15)

where 1{N=2} is an indicator function that takes the value 1 if N = 2, and 0 otherwise.

Limited entry is preferred for large N values. This is because c (N) = 0 for sufficiently
high N values. Further, when c (N) > 0, the sufficient condition (15) is more likely to
hold for high values of N : ξ (N − 1) (1 − Nq) ≤ 0 for N ≥ 1/q and is positive but
decreasing in N for N < 1/q. Similarly, for sufficiently large q values, limited entry is
preferred. Although c (N) moves non-monotonically with respect to q, it is decreasing in
q for q ≥ 1/N , and the sufficient condition is always negative for q ≥ 1/N . It is important
to note that if dVf/dθE > 0 as θE approaches 1, we cannot definitely conclude that full
entry is preferred, as there could be a local interior maximum even if Vf is increasing at
θE = 1. This is illustrated in Figure 4.

Figure 4 depicts how Vf changes with respect to θE under various scenarios. We set
N = 3, v = 8, α = 7, and vary q within the set {0.08, 0.15, 0.5}. In all these scenarios,
c (N) > 0. The sufficiency condition in (15) is met when q = 0.5, but it is not satisfied
for q = 0.08 and q = 0.15. For q = 0.5, Vf (represented by the continuous curve) reaches
its maximum value of 22.59 at θE = 0.54. For q = 0.15, Vf (represented by the green
dot-dashed curve) achieves its maximum at the boundary θE = 1. For q = 0.08, Vf

(shown as the blue dashed curve) attains its interior maximum at θE = 0.52.
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Figure 4: Vf against θE for different q values

7.2 The expected number of investors

Consider that the contest designer’s objective is to maximize the expected number of
investors. The likelihood of investment by a player, conditional upon entry, is θI/θE.
As the number of entrants follows Binomial (N, θE), the expected number of investors,
denoted by Vinv, is given by

Vinv (θE) =
N∑

n=0

(
N

n

)
(θE)n (1 − θE)N−n nθI (n)

θE

, (16)

where θI (n) and θE satisfy the conditions described in Proposition 1 and Proposition 2.
After rearranging terms, (16) can be simplified as

Vinv (θE) = NEn−1 [θI (n)] , (17)

where (n − 1) follows Binomial (N − 1, θE).
Consider first the case c (N) > 0, which occurs when ξ (N) > 1. Note that if θE ≤

ξ (N), then θE ≤ ξ (n) for every n ≤ N , and consequently, θI (n) = θE. From (17),
Vinv (θE) = NθE, which is maximized at θE = 1. Therefore, the designer prefers full
entry.

Next, consider the case when c (N) = 0, which occurs when ξ (N) ≤ 1. As we have
argued in the previous case, replacing c by ĉ (θE) in (17), we can express the designer’s
problem as a choice problem over the possible values of θE. Thus, we can study the
derivatives of Vinv with respect to θE at the boundary values to derive a sufficient condition
for the existence of a preferred entry threshold strictly below 1. Proposition 8 documents
the sufficient condition under which limited entry is preferred.
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Proposition 8. Consider a contest designer who maximizes the expected number of in-
vestors. If c (N) > 0, then the designer prefers full entry. If c (N) = 0, then a sufficient
condition for the designer to prefer limited entry is given by

(N − 1) qθ̂2

(N − 2) qθ̂ + 1
+ (N − 1)

(
θ̂ − ˆ̂

θ
)

< 0, (18)

where θ̂ := limθE→1 θI (N) and ˆ̂
θ := limθE→1 θI (N − 1).

Why might a designer choose to limit entry? In scenarios where full investment occurs
(i.e., when θI = θE), the designer generally benefits from raising the entry threshold.
However, she might consider limiting entry specifically when the investment threshold is
significantly lower than the entry threshold for certain values of n. In such cases, the
designer’s motivation for increasing θE is influenced not just by the investment thresholds
across different events with varying n values, but also by the rate at which the probabilities
of these events shift. Notably, as θE approaches 1, the rate of change in probabilities of all
events, except when n = N and n = N − 1, asymptotically approaches zero. In contrast,
the probabilities of the events of n = N −1 and n = N decrease and increase, respectively,
as θE nears 1. Additionally, given that θI (N − 1) is strictly larger than θI (N) (when
both are below θE), the reduction in probability of n = N − 1 can sometimes weaken the
designer’s motivation to raise the entry threshold. The sufficient condition outlined in
(18) precisely characterizes such scenarios.
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Figure 5: Vinv against θE for different q values

Figure 5 illustrates how Vinv changes with θE. We set N = 3, v = 3, α = 4, and
consider cases where q is 0.08 and 0.5. For q = 0.5, c (N) = 0.12, and Vinv (depicted by
the green dot-dashed curve) achieves its maximum at the boundary θE = 1. For q = 0.08,
c (N) = 0 and the sufficiency condition in (18) is satisfied; Vinv (represented by the blue
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dashed curve) reaches its maximum at θE = 0.72, with the maximum value being 1.95.
Notably, for q = 0.08, Vinv at θE = 1 is marginally lower, measured at 1.94.

8 Conclusion

This paper has investigated a generic contest model with endogenous entry and invest-
ment. Our analysis shows a complex interplay between the two types of uncertainty,
captured by the relationship between the probability of success and the total potential
number of participants. While the potential size of the prize and the cost of entering the
contest have predictable effects on entry and investment, the probability of a successful
investment has a non-monotonic effect. Furthermore, the region of non-monotonicity is
inextricably linked to the total number of competitors. The threshold values of marginal
cost that determine entry and investment in equilibrium resolve the complex decision
making process. Agents know that if they meet homogeneous rivals in the final contest
(whether they are all successful or unsuccessful in their investment), they will compete
away a large proportion of the contested prize, lowering the incentive to enter and make
a pre-contest investment. Meeting one or more stronger rivals in the contest also leads to
a low expected payoff and weak incentives. The driving force behind entry/investment is
the promise of being the lone strong agent in the contest, who is guaranteed a large prize
for low effort. If the probability of achieving a successful investment is very low, then an
agent is likely to meet equally weak rivals in the upcoming contest. If the success proba-
bility is high, an agent will expect to meet several equally strong rivals. An intermediate
probability of success balances these two scenarios, making entry and investment more
attractive.

We have shown that any entry threshold can be implemented by appropriate setting
of the cost of entering the contest. A sufficiently low (but positive) fee can entice full
entry into the contest, and this in turns guarantees that all entrants invest. A higher
entry cost discourages entry by those who have the highest marginal cost of investment.
It may well still be the case that all entrants invest also in this scenario. All other things
equal, a large initial number of competitors weakens the incentive for both entry and
investment.
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Appendix A

Appendix A contains the proofs that are omitted in the main text. We will begin with
documentation of two additional results, Lemma A.1 and Lemma A.2, that will be useful
in proving our main findings.

Lemma A.1. Consider a function f(p, X) : [0, 1] × N → R that is decreasing in both
arguments, p and X. Let m ≥ 2 be an integer and let X follow Binomial(m, p). Then,
dEX [f (p, X)] /dp ≤ 0.
Furthermore, if f is strictly decreasing in X for some X ∈ {0, 1, ..., m}, or if f is strictly
decreasing in p at some X ∈ {0, 1, ..., m}, then dEX [f (p, X)] /dp < 0.

Proof of Lemma A.1. Assume X ∽ Binomial (m, p). Then,

EX [f (p, X)] =
m∑

j=0
f (p, j)

(
m

j

)
(p)j (1 − p)m−j . (A.1)

Claim 1: dEX [f (p, X)] /dp = mEY [f (p, Y + 1) − f (p, Y ) + (pfp (p, Y + 1)) /Y + 1]+
(1 − p)m fp (p, 0), where Y ∽ Binomial (m − 1, p) and fp (p, X) = ∂f (p, X) /∂p, which is
the partial derivative of f with respect p.

Proof of Claim 1: Differentiating (A.1) with respect to p, we get

d

dp
EX [f (p, X)] =

m∑
j=0

f (p, j)
(

m

j

) [
jpj−1 (1 − p)m−j − (m − j) pj (1 − p)m−j−1

]

+
m∑

j=0
fp (p, j)

(
m

j

)
pj (1 − p)m−j

=
m∑

j=1
f (p, j) j

(
m

j

)
pj−1 (1 − p)m−j

−
m−1∑
j=0

f (p, j) (m − j)
(

m

j

)
pj (1 − p)m−j−1

+
m∑

j=1
fp (p, j)

(
m

j

)
pj (1 − p)m−j + (1 − p)m fp (p, 0)

Replacing j
(

m
j

)
, (m − j)

(
m
j

)
, and

(
m
j

)
by m

(
m−1
j−1

)
, m

(
m−1

j

)
, and m

j

(
m−1
j−1

)
, respectively,
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we get

d

dp
EX [f (p, X)] =

m∑
j=1

f (p, j) m

(
m − 1
j − 1

)
pj−1 (1 − p)(m−1)−(j−1)

−
m−1∑
j=0

f (p, j) m

(
m − 1

j

)
pj (1 − p)m−j−1

+
m∑

j=1
pfp (p, j) m

j

(
m − 1
j − 1

)
pj−1 (1 − p)(m−1)−(j−1) + (1 − p)m fp (p, 0)

Replacing j − 1 by j in the first and the third terms,

d

dp
EX [f (p, X)] =

m−1∑
j=0

f (p, j + 1) m

(
m − 1

j

)
pj (1 − p)(m−1)−j

−
m−1∑
j=0

f (p, j) m

(
m − 1

j

)
pj (1 − p)m−j−1

+
m−1∑
j=0

pfp (p, j + 1) m

j + 1

(
m − 1

j

)
pj (1 − p)(m−1)−j + (1 − p)m fp (p, 0)

=mEY

[
f (p, Y + 1) − f (p, Y ) + pfp (p, Y + 1)

Y + 1

]
+ (1 − p)m fp (p, 0) ,

(A.2)

where Y ∽ Binomial (m − 1, p) . This proves claim 1.
Observe that f is decreasing in both arguments, we have f (p, Y + 1) ≤ f (p, Y ) and

fp (p, Y ) ≤ 0 for any Y . Therefore, dEX [f (p, X)] /dp ≤ 0.
Further, it follows from (A.2) that if f is strictly decreasing in Y for some Y ∈

{0, 1, . . . , m − 1} or if fp < 0 at some Y ∈ {0, 1, . . . , m − 1}, then dEX [f (p, X)] /dp is
strictly negative, which proves the final part of the Lemma.

Lemma A.2. Consider a function f(X) : N → R that is decreasing in X. Fix p ∈ [0, 1]
and define a function F : N → R by F (m) = EX [f (X)] where X ∽ Binomial (m, p).
Then, F (m + 1) ≤ F (m). Furthermore, the inequality holds strictly if f is strictly
decreasing for some X ∈ {0, 1, ..., m}.

Proof of Lemma A.2. Since X ∽ Binomial (m, p), it can be expressed as the sum of
m Bernoulli variables: X = X1 + . . . + Xm where Xi ∽ Bernoulli (p). Then, F (m) =
EX [f (X)] = EX1 · · ·EXm [f (X1 + . . . + Xm)] for any m. Further, given that Xm+1 fol-
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lows Bernoulli, we can write

F (m + 1) =EX1 · · ·EXm+1 [f (X1 + . . . + Xm+1)]
=EX1 · · ·EXm [pf (X1 + . . . + Xm + 1) + (1 − p) f (X1 + . . . + Xm)]
=EX1 · · ·EXm [p (f (X1 + . . . + Xm + 1) − f (X1 + . . . + Xm))]

+ EX1 · · ·EXm [f (X1 + . . . + Xm)]
=pEX [(f (X + 1) − f (X))] + F (m) , (A.3)

where X ∽ Binomial (m, p). Because f (X) is decreasing in X, it follows that F (m + 1) ≤
F (m).

Finally, if f (X + 1) < f (X) for some X ∈ {0, 1, . . . , m}, then it follows from (A.3)
that F (m + 1) < F (m).

Proof of Lemma 1. Parts (i) and (ii) follow directly from Baye et al. (1996, Theorem
1). Part (iii) uses their Theorem 2. Denoting the expected effort of the skilled agent by
es, we can use Baye et al. (1996, Theorem 2C) to write the expected sum of efforts as

T (n, 1 ) =
n∑

i=1
Exi = v

α
+
(

1 − 1
α

)
Exs, (A.4)

where Exs is the expected effort of the single skilled agent, and this varies across the
continuum of equilibria. Denoting the mixed strategy of the skilled agent by Gs(xs), xs ∈[
xs, xs

]
, we have

Exs =
∫ xs

xs

(1 − Gs(xs)dxs. (A.5)

In the equilibrium leading to the least effort, we use Baye et al. (1996, eq. 4) to find the
mixed strategy of the skilled agent as

Gs(xs) = xs

v

(
1 − 1

α
+ xs

αv

) 2−n
n−1

, xs ∈ [0, v] . (A.6)

Inserting (A.6) into (A.5) and then into (A.4) gives T min(n, 1) after some rearrangement.
Further, when only one unskilled agent is active, Baye et al. (1996, eq. 4) implies

Gs(xs) = xs

v
, xs ∈ [0, v] . (A.7)

Inserting (A.7) into (A.5) and into (A.4) gives Tmax(n, 1). It is straightforward to verify
by substitution that T min(2, 1) = T max(n, 1).

Proof of Proposition 1. Consider that agents are following a threshold entry strategy:
all types less than θE enter. An agent’s return to investment q△ (n, m) − θ is decreasing
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in its investment cost θ, implying that its investment strategy follows a cutoff rule as
well. Further, because all agents have the same entry cost c, the investment cutoff will
also be the same across all agents who enter. Denoting the investment threshold by
θI , the probability that a randomly picked agent would have a successful investment
conditional on entry is q Pr [θ ≤ θI ] / Pr [θ ≤ θE] = qθI/θE. Since agents’ success are
independent events, the probability that an agent faces exactly m−1 successful agents out
of n−1 entrants is given by

(
n−1
m−1

)
(qθI/θE)m−1 (1 − (qθI/θE))n−m , m−1 ∈ {0, . . . , n − 1}.

Therefore, the expected return to investment is

q

 n−1∑
m−1=0

(
n − 1
m − 1

)(
qθI

θE

)m−1 (
1 − qθI

θE

)n−m

△ (n, m)
− θ,

which further reduces to (α − 1) vq (1 − (qθI/θE))n−1 − θ because △ (n, m) = 0 for all
m ≥ 2. If the expected return for the marginal entrant is positive, which happens if
(α − 1) vq (1 − q)n−1 − θE ≥ 0, or equivalently, ξ (n) ≥ θE, then all agents who enter
must invest. In this case, θI = θE. If the expected return is negative for the agent with
type θE, which happens if ξ (n) < θE, then only a subset of agents must invest, and θI

uniquely satisfies (5). The uniqueness follows from the fact that the marginal investor’s
expected return is also decreasing in θI .

Let Ω := q (1 − (qθI/θE))n−1 v (α − 1). From (5) we can find

dθI

dθE

=
∂Ω
∂θE

1 − ∂Ω
∂θI

= qθI(n − 1)Ω
θE (θE − qθI + q(n − 1)Ω) > 0.

The positive marginal effects of v and α can also be derived similarly. Furthermore,

∂

∂θE

(
θI

θE

)
=

θE
dθI

dθE
− θI

θ2
E

= −θI(θE − qθI)
θ2

E (θE − qθI + q(n − 1)Ω) < 0.

Proof of Proposition 2. Consider the entry decisions of two agents with types θ1 and
θ2, where θ1 < θ2. The θ1-type agent can achieve a payoff as high as that of the θ2-type
agent simply by replicating the strategy followed by the θ2-type agent, and even higher if
the strategy involves investment in subsequent subgames. Therefore, the expected payoff
of the θ1-type agent from its optimal entry strategy is greater than that of the θ2-type
agent, for any given strategy profile followed by other players. This observation implies
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that an agent would adopt a cutoff strategy: enter if and only if θ is below a certain
threshold. Furthermore, since all agents face the same entry cost, the threshold is the
same for all of them. We denote this threshold as θE.

At the entry stage, the expected payoff of the agent of type θE is En−1 [π (θE, n)] where
the number of other players, n−1, is a random variable following a Binomial distribution
with parameters N and θE. It directly follows from Lemma A.1 that En−1 [π (θE, n)] is
decreasing in θE. The full-entry condition can therefore be derived from the expected
payoff of the agent of type θ = 1, which is given by En−1 [π (1, n)] = π (1, N) = c (N) − c.
Therefore, if c ≤ c (N), every agent has an incentive to enter, and θE = 1. On the other
hand, if c > c (N), π (1, N) is negative and (11) has a unique solution determining the
entry threshold.

Further, considering En−1 [π (θE, n)] as a function G (θE, z) of θE and a generic pa-
rameter z, we can work with the total derivative of (11) to get

dθE

dz
= − ∂G/∂z

∂G/∂θE

.

As ∂G/∂θE ≤ 0, dθE/dz has the same sign as ∂G/∂z, whenever both terms are well-
defined. Applying this observation and the fact that π (θE, n) is increasing in v and α,
we conclude that θE increases in v and α.

Proof of Proposition 3. It follows from Proposition 2 that there is limited entry if
c > c (N), or equivalently, if ξ (N) < 1 + c, which holds if

f1 (q) := q (1 − q)(N−1) <
1 + c

v (α − 1) .

Examining the first derivative, we get that f1 is increasing in q ≤ 1/N , and decreasing
thereafter, implying

max
q∈[0,1]

f1 (q) = (N − 1)N−1

NN
.

If maxq∈[0,1] f1 (q) < (1 + c) /v (α − 1), there is limited entry for every q ∈ [0, 1], which
proves part (i) of the proposition. Further, if maxq∈[0,1] f1 (q) ≥ (1 + c) /v (α − 1), then
there will be full entry for some q. Given that f1 is increasing up to 1/N and decreasing
thereafter, f1 (q) must be higher than (1 + c) /v (α − 1) at an interval

[
q, q

]
, containing

1/N .

Proof of Proposition 4. Observe that the full-entry condition c ≤ c (N) can be rewrit-
ten as

(1 + c) ≤ ξ (N) ⇔ (1 − q)N−1 ≥ (1 + c)
vq (α − 1) .
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By taking the logarithm on both sides and noting that ln (1 − q) is negative, we can
express the above inequality as

N ≤ 1 + ln ((1 + c) / (vq (α − 1)))
ln (1 − q) .

Defining N̄ as max {0, 1 + ⌊(ln (1 + c) − ln ((α − 1) vq)) / ln (1 − q)⌋}, where ⌊x⌋ is the
largest integer less than or equal to x, part (1) of the proposition directly follows.

Next, suppose N > N̄ , in which case, there is limited entry and θE satisfies (11). We
express En−1 [π (θE, n)], where (n − 1) follows the distribution Binomial (N − 1, θE), as a
function of θE and N and denoted by G1 (θE, N):

G1 (θE, N) =
N−1∑

n−1=0

(
N − 1
n − 1

)
(θE)n−1 (1 − θE)N−n π (θE, n) .

The entry threshold θE (N) implicitly solves G1 (θE, N) = 0. Therefore,

G1 (θE (N + 1) , N + 1) − G1 (θE (N) , N) = 0
⇔ [G1 (θE (N + 1) , N + 1) − G1 (θE (N + 1) , N)]

+ [G1 (θE (N + 1) , N) − G1 (θE (N) , N)] = 0.

Since π (θE, n) is decreasing in n, it follows from Lemma A.2 that G1 (θE, N) is decreasing
in N , which implies that G1 (θE (N + 1) , N + 1) ≤ G1 (θE (N + 1) , N). Consequently,
G1 (θE (N + 1) , N) ≥ G1 (θE (N) , N). However, as π (θE, n) is also decreasing in θE, by
applying Lemma A.1, we find that G1 (θE, N) decreases in θE. Therefore, it must be that
θE (N + 1) ≤ θE (N), which completes the proof.

Proof of Proposition 5. The first part of the proposition directly follows from Propo-
sition 2. In order to show that θE is decreasing in c, we consider En−1 [π (θE, n)], where
(n − 1) follows the distribution Binomial (N − 1, θE), as a function of θE and N and de-
note it by G2 (θE, c). Note that θE (c) implicitly solves G2 (θE, c) = 0. Taking the total
derivative of G2 along the path of θE (c), we get dθE/dc = − (dG2/dc) / (dG2/dθE).

Note that π (θE, c) is strictly decreasing in c, and therefore it follows from Lemma A.1
that ∂G2/∂c < 0. Further, as θE solves En−1 [π (θE, n)] = 0, it must be that θE ≤ ξ (n) at
least for some n (as otherwise En−1 [π (θE, n)] will be independent of θE), which implies
that π (θE, n) is strictly decreasing in θE for some n. Therefore, by applying Lemma A.1,
we get ∂G2/∂θE < 0. Hence, dθE/dc < 0, which completes the proof.

Proof of Proposition 6. To construct ĉ (θE), we consider the two cases separately,
c (N) > 0 and c (N) = 0. Consider first c (N) > 0. It follows from Proposition 2 that for
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all c ≤ c (N), θE = 1, and therefore, ĉ (1) = c (N). For c > c (N) and θE < 1, θE and c

have a one-to-one relationship satisfying (11). Therefore, for all θE < 1, ĉ (θE) is uniquely
determined by the solution of (11). Further, by Proposition 5, ĉ (θE) is strictly decreasing
for 0 ≤ θE ≤ 1. Because G2 (θE, c) is continuous and differentiable in c, θE (c) is also
continuous and differentiable in c, ensuring the continuity and differentiability of ĉ (θE)
in θE ∈ [0, 1]. Further, because of strict monotonicity of ĉ (θE), any entry threshold
θE in [0, 1] can be implemented by choosing an entry fee c = ĉ (θE). Next, consider
c (N) = 0, which occurs when ξ (N) ≤ 1. We claim that if c = 0, then θE = 1 is a
unique solution of (11). The proof follows from two observations. Firstly, at θE = 1,
En−1 [π (1, n)] = π (1, N) = 0. Secondly, with c = 0, we have for all θE < 1, π (θE, 1) > 0
and π (θE, n) ≥ 0 for n ≥ 2. Therefore, En−1 [π (θE, n)] > 0 for all θE < 1, implying that
any θE < 1 cannot be a solution of (11) if c = 0. For c > 0 and θE < 1, θE and c have a
one-to-one relationship satisfying (11), and therefore, ĉ (θE) is uniquely determined by the
solution of (11). Further, as we have argued in the previous case, ĉ (θE) is differentiable
and strictly decreasing in θE for all θE ∈ [0, 1]. Therefore, any entry threshold θE in [0, 1]
can be implemented by setting c = ĉ (θE).

Proof of Proposition 7. It follows from the discussion in Section 6.3 that ĉ (θE) is
strictly positive for all θE < 1. Therefore, the maximum value of Vf (θE) must be positive,
and it must reach its maximum at some θE > 0.

Let us first consider the case c (N) = 0. Then, ĉ (1) = c (N) = 0, and therefore,
Vf (1) = 0, which implies that Vf is maximized at some interior θE ∈ (0, 1), and so the
designer prefers limited entry.

Next, consider c (N) > 0. Therefore, ĉ (1) = c (N) = ξ (N) − 1. We derive a sufficient
condition for an interior maximum by examining the derivative of Vf as θE approaches 1:
if the derivative is negative, then Vf must be maximized at some 0 < θE < 1. Note that

lim
θE→1

dVf

dθE

= N

(
ĉ (1) + lim

θE→1

dĉ (θE)
dθE

)
.

Recall from the proof of Proposition 5 that for θE ∈ (0, 1) and c > 0, ĉ (θE) solves

G2 (θE, c) =
N∑

n=1

(
N − 1
n − 1

)
(θE)n−1 (1 − θE)N−n π (θE, n) = 0.

From the total differential of dG2 = 0 along the path of ĉ (θE), we can derive dĉ (θE) /dθE =
− (∂G2/∂θE) / (∂G2/∂c). Further,

dG2/dc =
N∑

n=1

(
N − 1
n − 1

)
(θE)n−1 (1 − θE)N−n dπ (θE, n)

dc
= −1,
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which gives us dĉ (θE) /dθE = (dG2/dθE), and

lim
θE→1

dVf

dθE

= N

(
ξ (N) − 1 + lim

θE→1

dG2 (θE, c)
dθE

)
. (A.8)

Differentiating G2 (θE, c) with respect to θE, term by term, and taking the limit as θE → 1,
we get

lim
θE→1

dG2 (θE, c)
dθE

=
[
(N − 1) lim

θE→1
π (θE, N) + lim

θE→1

dπ (θE, N)
dθE

]
−
[
(N − 1) lim

θE→1
π (θE, N − 1)

]
,

(A.9)
where the first square-bracketed term arises from the derivative of the last term in the
summation series, and the second square-bracketed term comes from the derivative of
the second-to-last term of the series; Because dπ (θE, n) /dθE is finite for any n, it can
be easily shown that the derivatives of all other terms approach zero in the limit as θE

approaches 1.
Note that as ξ (N) > 1, from (10), we get limθE→1 dπ (θE, N) /dθE = −1. Further, as

θE → 1 , ĉ (θE) → ĉ (1) = c (N) = ξ (N) − 1. Therefore,

lim
θE→1

π (θE, N) = ξ (N) − 1 − ĉ (1) = 0, and

lim
θE→1

π (θE, N − 1) = v · 1{N=2} + ξ (N − 1) − 1 − ĉ (1) = v · 1{N=2} + ξ (N − 1) − ξ (N)

where 1{N=2} is an indicator function that takes the value 1 if N = 2, and 0 otherwise.
Replacing the limiting values in the right-hand-side of (A.9), we get

lim
θE→1

dG2 (θE, c)
dθE

= (N − 1)
(
ξ (N) − ξ (N − 1) − v · 1{N=2}

)
− 1.

Further, replacing the limiting value of dG2 (θE, c) /dθE in (A.8) and using the fact that
(N − 1) v · 1{N=2} = v · 1{N=2}, we can express

lim
θE→1

dVf

dθE

= N
[
Nξ (N) − (N − 1) ξ (N − 1) − 2 − v · 1{N=2}

]
= N

[
ξ (N − 1) (1 − Nq) − 2 − v · 1{N=2}

]
.

Therefore, (15) implies that limθE→1 dVf/dθE < 0 and it provides a sufficient condition
for having an interior maximum.

Proof of Proposition 8. It follows from (17) that Vinv = 0 at θE = 0, and Vinv > 0 at
θE = 1, implying that Vinv reaches its maximum at some θE > 0.

Let us first consider the case c (N) > 0, which occurs if ξ (N) > 1. In this case,
θE ≤ ξ (n) for all θE ∈ [0, 1] and n ≤ N , and therefore, by Proposition 1, θI = θE and
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Vinv = NθE, which is increasing in θE. Hence, the designer prefers full entry.
Next, consider c (N) = 0. Then, as θE → 1, we have ĉ (θE) → ĉ (1) = c (N) = 0. We

will derive a sufficient condition for an interior maximum by examining the derivative of
Vinv as θE approaches 1: if the derivative is negative, then Vinv must be maximized at
some 0 < θE < 1. Note that

lim
θE→1

dVinv (θE)
dθE

= N lim
θE→1

d

dθE

[
N∑

n=1

(
N − 1
n − 1

)
(θE)n−1 (1 − θE)N−n θI (n)

]
.

Differentiating Vinv (θE) with respect to θE, term by term, and taking the limit as θE → 1,
we get

lim
θE→1

dVinv (θE)
dθE

= N

[
(N − 1) lim

θE→1
θI (N) + lim

θE→1

dθI (N)
dθE

]
− N

[
(N − 1) lim

θE→1
θI (N − 1)

]
,

(A.10)
where the first square-bracketed term arises from the derivative of the last term in the
summation series, and the second square-bracketed term comes from the derivative of the
second-to-last term of the series; Because dθI (n) /dθE is finite for any n, it can be easily
shown that the derivatives of all other terms approach zero in the limit as θE approaches
1.

To find limθE→1 dθI (N) /dθE, observe that θI (N) solves

f (θI , θE) := v (α − 1) q (1 − (qθI/θE))N−1 − θI = 0.

Therefore, from the total differential of df = 0 along the path of θI (N), we can derive
dθI (N) /dθE = − (∂f/∂θE) / (∂f/∂θI). Further,

∂f

∂θE

= (N − 1) v (α − 1) q (1 − (qθI/θE))N−2
(

qθI

θ2
E

)
, and

∂f

∂θI

= − (N − 1) v (α − 1) q (1 − (qθI/θE))N−2
(

q

θE

)
− 1,

which give us

lim
θE→1

dθI (N)
dθE

=
(N − 1) v (α − 1) q2

(
1 − qθ̂

)N−2
θ̂

(N − 1) v (α − 1) q2
(
1 − qθ̂

)N−2
+ 1

, (A.11)

where θ̂ := limθE→1 θI (N). Because f (θI , θE) is continuous in θI and θE > 0, θ̂ satisfies
θ̂ = v (α − 1) q

(
1 − qθ̂

)N−1
. Therefore, (A.11) can be simplified as

lim
θE→1

dθI (N)
dθE

= (N − 1) qθ̂2

(N − 1) qθ̂ +
(
1 − qθ̂

) = (N − 1) qθ̂2

(N − 2) qθ̂ + 1
∈ (0, 1) . (A.12)
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We define ˆ̂
θ := limθE→1 θI (N − 1), which solves v (α − 1) q (1 − qθ)N−2 − θ = 0. It can

be easily verified thatˆ̂
θ > θ̂.

Using (A.12), we can simplify (A.11) as

lim
θE→1

dVinv (θE)
dθE

= N

(N − 1)
(

θ̂ − ˆ̂
θ
)

+ (N − 1) qθ̂2

(N − 2) qθ̂ + 1

 .

Therefore, (18) implies that limθE→1 dVinv/dθE < 0 and it provides a sufficient condition
for having an interior maximum.
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