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This document contains supplementary materials for Clark et al. (2025). In sec-
tion B.1, we analyze the first-period investment game with a quadratic investment
cost function c(k) = k2

2 . In section B.2, we discuss an equilibrium refinement.

B.1 The investment game with a quadratic cost

The following are the first-period payoff functions.

u1(k1, k2) =



V1 − k1
2

2 , if k1 > k2 + V2

s
;

(V1 − V2) + s(k1 − k2) − k1
2

2 , if k1 ∈ [k2 + V2

s
− V1

s
, k2 + V2

s
];

−k1
2

2 , if k1 < k2 + V2

s
− V1

s
.

(B.1)

u2(k1, k2) =



V2 − k2
2

2 , if k2 > k1 + V1

s
;

(V2 − V1) + s(k2 − k1) − k2
2

2 , if k2 ∈ [k1 + V1

s
− V2

s
, k1 + V1

s
];

−k2
2

2 , if k2 < k1 + V1

s
− V2

s
.

(B.2)
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B.1.1 Pure-strategy equilibria

Observe that z(s) = arg maxk≥0 sk − k2

2 = s, M(s) = s2

2 , ŝ1 =
√

V2, ŝ2 =
√

V1, and
c−1(Vi) =

√
2Vi. Furthermore, we have

z(V1 + V2

c−1(V2)
) > c−1(V2), which implies s̄1 = V1 + V2

c−1(V2)
= V1 + V2√

2V2
;

z(V1 + V2

c−1(V1)
) < c−1(V1), which implies s̄2 = M−1(V2) =

√
2V2; and

M(s) = c(z(s)) = s2

2 , which implies s2 =
√

2(V1 − V2).

Finally, M(ŝ2) ≤ V2 ⇔ V1 ≤ 2V2. It therefore follows from Propositions 1, 2, and 3
of Clark et al. (2025) that the reinforcement equilibrium exists for all 0 < s ≤ V1+V2√

2V2
,

and the preemptive equilibrium exists for s ∈ [
√

2(V1 − V2),
√

2V2] if V1 ≤ 2V2.

B.1.2 Mixed-strategy equilibria

Assume that player i is playing in equilibrium a mixed strategy given by the cumu-
lative distribution function Gi. We let αi(x) denote the mass placed at x by player
i’s mixed strategy.

Given G1 and G2, we can express the players’ expected payoffs as follows:

EU1(k1) =
∫ max{k1− V2

s
,0}

0
V1dG2(k2)

+
∫ k1− V2

s
+ V1

s

max{k1− V2
s

,0}
((V1 − V2) + s(k1 − k2))dG2(k2) − k2

1
2 ; (B.3)

EU2(k2) =
∫ max{k2− V1

s
,0}

0
V2dG1(k1)

+
∫ max{k2− V1

s
+ V2

s
,0}

max{k2− V1
s

,0}
((V2 − V1) + s(k2 − k1))dG1(k1) − k2

2
2 . (B.4)

Using the Leibniz rule, we can derive the first-order derivatives of the players’
expected payoff functions, which are given by

dEU1

dk1
=


s
[
G2
(
k1 − V2

s
+ V1

s

)
− G2

(
k1 − V2

s

)]
− k1, if k1 ≥ V2

s
,

s
[
G2
(
k1 − V2

s
+ V1

s

)
− G2(0)

]
− k1, if k1 <

V2

s
;

(B.5)

2



dEU2

dk2
=



s
[
G1
(
k2 − V1

s
+ V2

s

)
− G1

(
k2 − V1

s

)]
− k2, if k2 >

V1

s
,

s
[
G1
(
k2 − V1

s
+ V2

s

)
− G1(0)

]
− k2, if V1 − V2

s
≤ k2 ≤ V1

s
,

− k2, if k2 <
V1 − V2

s
.

(B.6)
Observe that, for any given investment level k, player i’s payoff is bounded

above by Vi− k2

2 , so player i would never use a strategy that puts mass on (
√

2Vi, ∞)
(setting the investment equal to zero strictly dominates such a strategy). Therefore,
we must have Gi(k) = 1 for all k ≥

√
2Vi.

Lemma B.1. G2(0) = G2(V1−V2
s

).

Proof. It follows from (B.6) that 2’s payoff is strictly decreasing in k2 for k2 ∈
(0, V1−V2

s
] for any given strategy by player 1.

A direct implication of Lemma B.1 is α2(V1−V2
s

) = 0. Furthermore, it also follows
that 2 cannot randomize continuously over an interval starting at V1−V2

s
.

Lemma B.2. If player 2 randomizes continuously over [V1−V2
s

+ δ1,
V1−V2

s
+ δ2] with

δ2 > δ1 ≥ 0, we must have δ1 ̸= 0.

Proof. Suppose, toward a contradiction, 2 randomizes over [V1−V2
s

, V1−V2
s

+ δ2] with
δ2 > 0. Then, d EU2

dk2
must be zero at k2 = V1−V2

s
. However, by (B.6), d EU2

dk2
= −V1−V2

s

at k2 = V1−V2
s

, which is strictly negative.

Lemma B.3. If α2(0) > 0, then player 2 gets zero expected payoff in equilibrium.

Proof. For any given G1, it follows from (B.4) that 2’s expected payoff from playing
zero is zero, which must equal his expected payoff from playing the mixed strategy
if he places a positive mass at zero.

Lemma B.4. If α1(0) > 0, then player 1’s expected payoff in equilibrium is (V1 −
V2)α2(0).

Proof. By Lemma B.1, for a given G2, player 1’s expected payoff from playing zero
is (V1 − V2)G2(V1−V2

s
) = (V1 − V2)G2(0) = (V1 − V2)α2(0), which must equal his

expected payoff from playing the mixed strategy if he places a positive mass at
zero.
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Lemma B.5. Consider δ2 > δ1 > 0. If 2 randomizes continuously over [V1−V2
s

+
δ1,

V1−V2
s

+ δ2], then 1 must randomize continuously over [δ1, δ2], and vice versa.

Proof. We prove this by contradiction. First, consider the possibility that player
2 randomizes continuously over [V1−V2

s
+ δ1,

V1−V2
s

+ δ2] and player 1 does not over
[δ1, δ2], so that there exist ϵ1, ϵ2 with δ1 ≤ ϵ1 < ϵ2 ≤ δ2 such that G1(ϵ2) = G1(ϵ1).

Since player 2 randomizes over [V1−V2
s

+δ1,
V1−V2

s
+δ2], we must have dEU2/dk2 =

0 at k2 = V1−V2
s

+ ϵ1. We claim that, for an ϵ sufficiently close to but above ϵ1,
dEU2/dk2, computed at k2 = V1−V2

s
+ ϵ, is strictly negative. There are two cases to

consider.
Case (i): Consider ϵ1 < V2

s
, and fix ϵ ∈ (ϵ1, min{V2

s
, ϵ2}). By (B.6), at k2 =

V1−V2
s

+ ϵ, dEU2/dk2 = G1(ϵ) − G1(0) − ϵ − V1−V2
s

, which is strictly negative, since
ϵ > ϵ1, G1(ϵ) = G1(ϵ1); and at k2 = V1−V2

s
+ ϵ1, dEU2/dk2 = G1(ϵ1) − G1(0) − ϵ1 −

V1−V2
s

= 0.
Case (ii): Consider ϵ1 ≥ V2

s
, and fix ϵ ∈ (ϵ1, ϵ2). By (B.6), at k2 = V1−V2

s
+ ϵ,

dEU2/dk2 = G1(ϵ) − G1(V2
s

+ ϵ) − ϵ − V1−V2
s

, which is also strictly negative since
ϵ > ϵ1, G1(ϵ) = G1(ϵ1), G1(V2

s
+ϵ) ≥ G1(V2

s
+ϵ1); and at k2 = V1−V2

s
+ϵ1, dEU2/dk2 =

G1(ϵ1) − G1(V2
s

+ ϵ1) − ϵ1 − V1−V2
s

= 0.
Therefore, there exists an open interval starting from ϵ1 in which player 2 will

not randomize, contradicting that G2 is the best response against G1. The converse
case can be proved using a similar line of argument.

From Lemma B.4 and the observation that G2(k2) = 1 for all k2 ≥
√

2V2, we
conclude that V1−V2

s
+ δ2 ≤

√
2V2, or, equivalently,

δ2 ≤ δ̄2 := V2

s
+
(√

2V2 − V1

s

)
. (B.7)

Therefore, for s < V1√
2V2

, δ̄2 < V2
s

.

Lemma B.6. Assume player 2 mixes continuously with strictly positive probability
over an interval

[
V1−V2

s
+ δ1,

V1−V2
s

+ δ2
]
, where 0 ≤ δ1 < δ2. Then there is no

nontrivial subinterval in
(

V1−V2
s

+ δ1,
V1−V2

s
+ δ2

)
on which G2 remains constant.

Equivalently, for any x ∈
(

V1−V2
s

+ δ1,
V1−V2

s
+ δ2

)
and any small ϵ > 0 with x ± ε

still in that open interval, we have

G2(x + ε) − G2(x − ε) > 0.

Proof. Suppose, for contradiction, that there is a sub-interval
(
a, b

)
⊂
(

V1−V2
s

+
δ1,

V1−V2
s

+ δ2
)

on which G2 remains flat, i.e., for all u, v ∈ (a, b), G2(u) = G2(v).
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Equivalently, player 2 places no probability mass at any point k2 ∈ (a, b).
By assumption, player 2 is mixing with positive probability throughout

[
V1−V2

s
+

δ1,
V1−V2

s
+ δ2

]
and so must be indifferent (i.e., d EU2

dk2
= 0) on every point of the

support, including points close to a and b.
Since a and b both lie strictly in the interior, player 2 is indeed mixing on

( V1−V2
s

+ δ1, a ) and also on ( b, V1−V2
s

+ δ2 ). Hence, we must have

d EU2

dk2

∣∣∣∣
k2=a

= 0 and d EU2

dk2

∣∣∣∣
k2=b

= 0,

because a and b are endpoints of portions of player 2’s mixing support.
From (B.6),

d EU2

dk2
= G1(k2 − V1 − V2

s
) − G1(0) − k2.

Setting k2 = a yields

0 = G1(a − V1 − V2

s
) − G1(0) − a, (B.8)

and similarly, for k2 = b,

0 = G1(b − V1 − V2

s
) − G1(0) − b. (B.9)

Subtracting (B.8) from (B.9) and rewriting, we get

G1
(
b − V1 − V2

s

)
− G1

(
a − V1 − V2

s

)
= b − a. (B.10)

Let x ∈ (a, b). Then

d EU2

dk2

∣∣∣∣
k2=x

= G1(x − V1 − V2

s
) − G1(0) − x.

We need to see if this can remain 0 given that it is 0 at x = a and x = b.
Consider (B.10). If G1 is monotonic and x ∈ (a, b), then x − a < b − a implies

G1(x − V1 − V2

s
) − G1(a − V1 − V2

s
) < G1(b − V1 − V2

s
) − G1(a − V1 − V2

s
),

so that
G1(x − V1 − V2

s
) − G1(a − V1 − V2

s
) < (b − a).
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Rearranging gives

G1(x − V1 − V2

s
) − G1(0) <

[
G1(a − V1 − V2

s
) − G1(0)

]
+ (b − a).

But (B.8) implies

G1(x − V1 − V2

s
) − G1(0) < a + (b − a) = b.

So,

d EU2

dk2

∣∣∣∣
k2=x

=
[
G1(x − V1 − V2

s
) − G1(0)

]
− x ≤ b − x − x = b − 2 x.

If x is even slightly larger than b
2 , then the right side becomes negative, forcing

d EU2
dk2

∣∣∣
k2=x

< 0. Thus the slope cannot remain zero in (a, b). Therefore, player 2 would
want to shift probability either into or out of the subinterval (a, b), contradicting
the assumption that 2 is fully indifferent at a and b while placing no mass in
between.

It follows from Lemma B.2 and Lemma B.6 that player 2 can randomize over at
most one continuous interval of non-zero length in any mixed-strategy equilibrium,
and that this interval must begin at V1−V2

s
+ δ1, where δ1 > 0. Consequently, by

Lemma B.5, player 1 can randomize over at most one continuous interval, which
must begin at δ1. Below, we consider mixed strategies by player 1 that involve
randomization over actions in a continuous interval [δ1, δ2] with δ2 ≥ δ1 > 0 and
mixed strategies by player 2 that involve randomization over actions in [V1−V2

s
+

δ1,
V1−V2

s
+ δ2].

If such a strategy profile can be sustained in a mixed-strategy equilibrium, then
we must have

d EU1

dk1

= 0 for all k1 ∈ [δ1, δ2],

≤ 0 for all k1 ̸∈ [δ1, δ2];
(B.11)

d EU2

dk2

= 0 for all k2 ∈ [V1−V2
s

+ δ1,
V1−V2

s
+ δ2],

≤ 0 for all k2 ̸∈ [V1−V2
s

+ δ1,
V1−V2

s
+ δ2].

(B.12)

Derivation of the distribution functions
We first derive the optimal distribution functions that sustain randomization

over an interval of actions for each player. Later, we examine when players assign
a mass point at zero.
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Consider the indifference condition of player 1. To begin with, assume that δ2

is a sufficiently large number (ignoring that Gis are bounded above by 1).
Consider k ∈ [δ1,

V1
s

+ δ1). In this range, k − V2
s

< V1−V2
s

+ δ1, and because player
2 does not randomize between 0 and V1−V2

s
+ δ1, G2(k − V2

s
) = G2(0) = α2(0). From

(B.5) and (B.11), G2(k + V1−V2
s

) = G2(0) + k
s
, or, equivalently,

G2(x) = x

s
+ α2(0) − V1 − V2

s2 for x ∈ [V1 − V2

s
+ δ1,

2V1 − V2

s
+ δ1)

Since player 2 does not randomize between 0 and V1−V2
s

+ δ1, there will be a mass
point at V1−V2

s
+ δ1, and α2(V1−V2

s
+ δ1) = δ1

s
.

Next, consider k ∈ [V1
s

+ δ1,
2V1

s
+ δ1). In this range, V1−V2

s
+ δ1 ≤ k − V2

s
<

2V1−V2
s

+ δ1. From (B.5) and (B.11), G2(k + V1−V2
s

) = G2(k − V2
s

) + k
s

= k
s

− V2
s2 +

α2(0) − V1−V2
s2 + k

s
= 2k

s
− V1

s2 + α2(0), or, equivalently,

G2(x) = 2
s

(
x − V1 − V2

s

)
− V1

s2 + α2(0)

= 2x

s
+ α2(0) − 3V1 − 2V2

s2 , for x ∈ [2V1 − V2

s
+ δ1,

3V1 − V2

s
+ δ1).

Next, consider k ∈ [2V1
s

+ δ1,
3V1

s
+ δ1). In this range, 2V1−V2

s
+ δ1 ≤ k − V2

s
<

3V1−V2
s

+ δ1. From (B.5) and (B.11), G2(k + V1−V2
s

) = G2(k − V2
s

) + k
s

= 2k
s

− 2V2
s2 +

α2(0) − 3V1−2V2
s2 + k

s
= 3k

s
− 3V1

s2 + α2(0), or, equivalently,

G2(x) = 3
s

(
x − V1 − V2

s

)
− 3V1

s2 + α2(0)

= 3x

s
+ α2(0) − 6V1 − 3V2

s2 , for x ∈ [3V1 − V2

s
+ δ1,

4V1 − V2

s
+ δ1).

In general, we can express the distribution as follows (can be verified by induc-
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tion):

G2(x) =



α2(0) for x <
V1 − V2

s
+ δ1

min
{

nx

s
+ α2(0)

− n(n + 1)V1 − 2nV2

2s2 , 1
} for x ∈

[
nV1 − V2

s
+ δ1,

min
{

(n + 1)V1 − V2

s
+ δ1,

√
2V2

})
,

n = 1, 2, . . .

1 for x ∈
[√

2V2, ∞
)

(B.13)

It is easy to verify that dEU1
dk1

< 0 for k1 > x, whenever G2(x + V1−V2
s

) = 1.
Therefore, for given δ1, α2(0), and G2, (B.5) is satisfied. Computing G2 at the
boundary points of each interval, we find:

G2

(
nV1 − V2

s
+ δ1

)
= nδ1

s
+ α2(0) + n(n − 1)V1

2s2 , (B.14)

lim
x→( (n+1)V1−V2

s
+δ1)−

G2 (x) = nδ1

s
+ α2(0) + n(n + 1)V1

2s2 , (B.15)

G2

(
(n + 1)V1 − V2

s
+ δ1

)
= (n + 1)δ1

s
+ α2(0) + n(n + 1)V1

2s2 (B.16)

Therefore, G2 assigns an atom of size δ1
s

at every boundary point nV1−V2
s

+δ1, n ≥ 1.
It is also worth noting that G2 can be equal to one at some k2 strictly below

√
2V2.

We next construct G1 from player 2’s indifference condition. Since player 1 does
not randomize between 0 and δ1, we must have

G1(x) = G1(0) = α1(0), for x < δ1. (B.17)

Consider k ∈ [V1−V2
s

+ δ1,
V1
s

+ δ1). In this range, k − V1
s

< δ1, and because player
1 does not randomize between 0 and δ1, G1(k − V1

s
) = G1(0) = α1(0). From (B.6)

and (B.12), we have G1(k − V1−V2
s

) = G1(k − V1
s

) + k
s

= α1(0) + k
s
, or, equivalently,

G1(x) = x

s
+ α1(0) + V1 − V2

s2 , for x ∈ [δ1,
V2

s
+ δ1).

Next, consider k ∈ [V1
s

+ δ1,
V1+V2

s
+ δ1). In this range, δ1 ≤ k − V1

s
< V2

s
+ δ1, and
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so G1(k − V1
s

) = k
s

+ α1(0) − V2
s2 . From (B.6) and (B.12), we have G1(k − V1−V2

s
) =

G1(k − V1
s

) + k
s

= 2k
s

+ α1(0) − V2
s2 , or, equivalently,

G1(x) = 2x

s
+ α1(0) + 2V1 − 3V2

s2 , for x ∈ [V2

s
+ δ1,

2V2

s
+ δ1)

Next, consider k ∈ [V1+V2
s

+ δ1,
V1+2V2

s
+ δ1). In this range, V2

s
+ δ1 ≤ k − V1

s
<

2V2
s

+ δ1, and so G1(k − V1
s

) = 2k
s

+ α1(0) − 3V2
s2 . From (B.6) and (B.12), we have

G1(k − V1−V2
s

) = G1(k − V1
s

) + k
s

= 3k
s

+ α1(0) − 3V2
s2 , or, equivalently,

G1(x) = 3x

s
+ α1(0) + 3V1 − 6V2

s2 , for x ∈ [2V2

s
+ δ1,

3V2

s
+ δ1).

In general, we can express the distribution as follows (can be proved by induction):

G1(x) =



α1(0) for x < δ1

min
{

mx

s
+ α1(0)

+ 2mV1 − m(m + 1)V2

2s2 , 1
} for x ∈

[
(m − 1)V2

s
+ δ1,

min
{

mV2

s
+ δ1, δ̄2

})
,

m = 1, 2, . . .

1 for x ∈
[
δ̄2, ∞

)

(B.18)

where δ̄2 = V2

s
+
(√

2V2 − V1

s

)
.

Since player 2 will never use a strategy that puts mass on
[√

2V2, ∞
)
, player 1

has no incentive to invest at any level above δ̄2, as we have shown above. However,
G1(x) can be equal to one at some x < δ̄2. It is easy to verify that dEU2

dk2
< 0 for

k2 > V1−V2
s

+ x whenever G1(x) = 1. For given δ1, α1(0), and G1, (B.6) is satisfied.
Computing G1 at the boundary points of each interval, we find:

G1

(
(m − 1)V2

s
+ δ1

)
= mδ1

s
+ α1(0) + m(2V1 + (m − 3)V2)

2s2 ; (B.19)

lim
x→( mV2

s
+δ1)−

G1 (x) = mδ1

s
+ α1(0) + m(2V1 + (m − 1)V2)

2s2 ; and (B.20)

G1

(
mV2

s
+ δ1

)
= (m + 1)δ1

s
+ α1(0) + (m + 1)(2V1 + (m − 2)V2)

2s2 . (B.21)
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Therefore, G1 assigns an atom of size δ1
s

+ V1−V2
s2 at every boundary point (m−1)V2

s
+

δ1, m ≥ 1.

Lemma B.7. αi(0) ∈ (0, 1) for i = 1, 2.

Proof. If player 2 plays according to (B.13), then player 1’s payoff from playing 0
is (V1 − V2)G2(0) = (V1 − V2)α2(0), and 1’s payoff from playing δ1 is (V1 − V2 +
min{δ1s, V2})G2(0) − δ2

1
2 = (V1 − V2 + min{δ1s, V2})α2(0) − δ2

1
2 (because for any

k2 ≥ V1−V2
s

+ δ1, we have U1(δ1, k2) = − δ2
1
2 ). Therefore, in any mixed strategy

equilibrium in which 1 randomizes over [δ1, δ2]
⋃{0}, we must have:

min{δ1s, V2}α2(0) >
δ2

1
2 =⇒ α1(0) = 0,

min{δ1s, V2}α2(0) <
δ2

1
2 =⇒ α1(0) = 1,

α1(0) ∈ (0, 1) =⇒ min{δ1s, V2}α2(0) = δ2
1
2 .

Now, if α2(0) = 0, then player 1 must play a pure strategy (specifically, 0). We
know from our analysis of pure-strategy equilibria that player 2 then has a unique
best response in pure strategy and so will not randomize over a nonzero interval.
This rules out the possibility that α2(0) = 0 and α1(0) = 1.

Similarly, given that player 1 plays according to (B.19), we have that player 2’s
respective payoffs from playing zero and playing (V1−V2

s
+δ1) are 0 and min{δ1s, V2}α1(0)−

(V1−V2
s

+δ1)2/2, respectively. Therefore, if player 2 randomizes over [V1−V2
s

+δ1,
V1−V2

s
+

δ2]
⋃{0}, we must have:

min{δ1s, V2}α1(0) >
(V1−V2

s
+ δ1)2

2 =⇒ α2(0) = 0,

min{δ1s, V2}α1(0) <
(V1−V2

s
+ δ1)2

2 =⇒ α2(0) = 1,

α2(0) ∈ (0, 1) =⇒ min{δ1s, V2}α1(0) =
(V1−V2

s
+ δ1)2

2 .

If α1(0) = 0, then player 2 must play a pure strategy (specifically, 0), in which case
player 1 has a unique best response in pure strategy, and so he will not randomize
over a non-zero interval. This rules out the possibility that α1(0) = 0 and α2(0) = 1.

Therefore, in any mixed-strategy equilibrium, we can only have αi(0) ∈ (0, 1)
for i = 1, 2.

Lemma B.8. α1(0) =
(V1−V2

s
+ δ1)2

2 min{δ1s, V2}
, α2(0) = δ2

1
2 min{δ1s, V2}

.

Proof. The proof follows from the proof of Lemma B.7.
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By Lemma B.5 and Lemma B.6, both players randomize over at most one con-
tinuous interval of the same length. From the specifications of G1 and G2 in (B.19)
and (B.13), we see that the continuous interval over player 1’s action space is a
union of contiguous sub-intervals of length V2/s, while that over player 2’s action
space is a union of contiguous sub-intervals of length V1/s. Furthermore, player 1
assigns higher probability masses to the boundary points of each sub-interval com-
pared to player 2; specifically, player 1 assigns a probability of δ1

s
+ V1−V2

s2 , whereas
player 2 assigns a probability of δ1

s
. These observations, along with the fact that

α1(0) > α2(0) (which follows from Lemma B.8), together imply that G1 increases
in value at a faster rate than G2. We therefore define

δ2 := lim inf
x

{x : G1(x) = 1}, (B.22)

and adjust player 2’s strategy to ensure randomization over an interval of the same
length as player 1’s as follows:

G̃2(k2) :=

G2(k2) if k2 < δ2

1 if k2 ≥ δ2

. (B.23)

In the above construction, a family of mixed-strategy equilibria is defined by δ1,
and we can express α1(0), α2(0), and δ2 (when it is strictly below δ̄2) as functions
of δ1. These mixed-strategy equilibria exist only if G1(δ1) < 1; if, on the other
hand, G1(δ1) ≥ 1, then one of the players has incentives to deviate. This existence
condition can be expressed as:

G1(δ1) = α1(0) + δ1

s
+ V1 − V2

s2 < 1

⇐⇒
(V1−V2

s
+ δ1)2

2 min{δ1s, V2}
+ δ1

s
+ V1 − V2

s2 < 1 (B.24)

The left-hand side of the above expression changes with respect to δ1 in a non-
monotone way. It can be shown that the expression is increasing in δ1 for δ1 > V2/s

but can have a local minimum at some δ1 < V2/s for V2 close to V1. The expression
is decreasing in s and it trivially follows that, for s ≤

√
V1 − V2, none of these

mixed-strategy equilibria can exist (although it is not a necessary condition for
non-existence). Below we show that a mixed-strategy equilibrium exists for so high
values of s that no reinforcement equilibrium exists.

Steps to construct mixed-strategy equilibria

Step 1: Consider G1 in (B.19). Let α1(0) =
(V1−V2

s
+ δ1)2

2 min{δ1s, V2}
and find δ1 that
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satisfies (B.24).

Step 2: Let δ2 = lim infx{x : G1(x) = 1} and α2(0) = δ2
1

2 min{δ1s, V2}
. Consider

G2 in (B.13) and adjust player 2’s strategy to G̃2 as given in (B.23).
The strategy profile {G1, G̃2} constitutes a mixed-strategy equilibrium. In this

mixed-strategy equilibrium, player 1’s expected payoff is given by (V1 − V2)α2(0),
and player 2’s expected payoff is zero.

B.1.3 Payoff comparison across equilibria

It trivially follows that a reinforcement (pure-strategy) equilibrium weakly payoff-
dominates a mixed-strategy equilibrium in the range of parameter values where both
types of equilibria exist. This is because, in any reinforcement equilibrium, player
1 receives at least V1 − V2, while player 2 receives zero. The preemptive equilibrium
neither payoff-dominates nor is dominated by the mixed-strategy equilibria.

B.1.4 Existence of a mixed-strategy equilibrium when no reinforcement
equilibrium exists

It is worth noting that these mixed-strategy equilibria exist for the range of s where
no reinforcement equilibrium exists, i.e., for s > s̄1 (see Proposition 1 in Clark
et al. (2025)). To see this, we rewrite (B.24), denoting V1−V2

s
by a and considering

δ1 < V2/s, as:

(a + δ1)2

2δ1s
+ δ1

s
+ a

s
< 1

⇐⇒ a2 + 4aδ1 + 3δ2
1 < 2δ1s

⇐⇒ (a + 2δ1)2 < 2δ1s + δ2
1 (B.25)

Recall that s̄1 = V1 + V2√
2V2

, which implies that s > s̄1 ⇐⇒
(

V1 + V2

s

)2
< 2V2. We

can choose δ1 less than but sufficiently close to V2/s such that 2δ1s < 2V2 < 2δ1s+δ2
1.

For such a combination of values of δ1 and s, we then have:

(a + 2δ1)2 <
(

V1 − V2

s
+ 2V2

s

)2
=
(

V1 + V2

s

)2
< 2V2 < 2δ1s + δ2

1;

Condition (B.25) is therefore satisfied.
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B.1.5 An example of a mixed-strategy equilibrium

We construct a mixed-strategy Nash equilibrium for s = s̄1 following an approach
that works for any s > s̄1.

Consider δ1 = V2/s, so that α1(0) = V 2
1

2V2s2 , and α2(0) = V2

2s2 . The condition
(B.24) for the existence of a mixed-strategy equilibrium requires that G1(δ1) < 1,

or, equivalently, that V 2
1 + 2V1V2

2V2
< s2. We consider s = s̄1 = V1 + V2√

2V2
, which

satisfies (B.24) (note that all s > s̄1 satisfy the condition, as well). For s = s̄1,
using (B.22), we get δ2 = 3V2

2s̄1
.

Therefore, in this mixed strategy equilibrium, player 1 uses a strategy that
puts a probability mass of α1(0) = V 2

1
(V1 + V2)2 at zero, a probability mass of δ1

s̄1
+

V1 − V2

s̄2
1

= 2V1V2

(V1 + V2)2 at V2

s̄1
, and randomization over k ∈

(
V2

s̄1
,
3V2

2s̄1

]
with a density

1
s̄1

=
√

2V2

V1 + V2
; while player 2 uses a strategy that puts a probability mass of α2(0) =

V 2
2

(V1 + V2)2 at zero, a probability mass of δ1

s̄1
= 2V 2

2
(V1 + V2)2 at V1

s̄1
, randomization

over k ∈
(

V1

s̄1
,
V1

s̄1
+ V2

2s̄1

)
with a density 1

s̄1
=

√
2V2

V1 + V2
, and a probability mass of

1 − 4V 2
2

(V1 + V2)2 at V1

s̄1
+ V2

2s̄1
.

B.2 Weak perfection

Simon and Stinchcombe (1995) (hereafter SS) provide a generalization of the con-
cept of perfect equilibrium—originally introduced by Selten (1975) for finite games—
to infinite games with compact, metrizable strategy sets and continuous payoffs. In
this section, we examine an SS-type perfect-equilibrium refinement of pure strategy
equilibria of the first-period investment game. To invoke SS’s framework, we restrict
each player’s action space to a closed interval. Specifically, consider an arbitrarily
large but finite K >

√
2V1 and confine a player’s action choice ki to [0, K]. This

truncation does not alter first-period equilibrium behavior, since any ki > K is
strictly dominated for both players.

A mixed strategy over the action space [0, K] can be viewed as a probability
measure on [0, K]. To determine the distance between two mixed strategies, we
equip the strategy space with the Lévy–Prokhorov metric. Formally, if f and g are
two probability measures on [0, K], the distance between them is given by

τ(f, g) = inf{ϵ > 0 : ∀B ⊂ [0, K], f(B) ≤ g(Bϵ) + ϵ and g(B) ≤ f(Bϵ) + ϵ},

13



where Bϵ is the ϵ-neighborhood of B. This metric induces the topology of weak
convergence on the space of mixed strategies.

For i ∈ {1, 2}, let ∆i denote player i’s set of mixed strategies over the action
space [0, K]; and let ∆ = ∆1 × ∆2. Further, for µ ∈ ∆, let Bri(µ) denote i’s set of
best responses to the strategy profile µ.

Definition B.1. [Simon and Stinchcombe (1995), Definition 1.2] A weakly ϵ-perfect
equilibrium is a strategy profile µϵ = (µϵ

1, µϵ
2) ∈ ∆ such that, for i ∈ {1, 2},

τ(µϵ
i , Bri(µϵ)) < ϵ. A strategy profile µ = (µ1, µ2) ∈ ∆ is a weakly perfect equi-

librium if it is the weak limit (converging point-wise at every point of continuity) of
a weak ϵn-perfect equilibrium for some sequence ϵn → 0.

The following theorem provides an equivalent characterization of weakly perfect
equilibrium.

Theorem B.1. [Simon and Stinchcombe (1995), Theorem 2.5] For the first-period
investment game, the following statements are equivalent:

(a) µ is a weakly perfect equilibrium; and

(b) µ is the limit of a sequence µn of full support strategies with the property that,
for all i ∈ {1, 2}, µn

i (Bri(µn)ϵn) → 1 for some sequence ϵn → 0.

Note that the two pure-strategy equilibria of the original game—the reinforce-
ment equilibrium and the preemptive equilibrium—are also equilibria of the game
with truncated action space. We further claim that these equilibria are weakly
perfect whenever they are strict, i.e., whenever each player’s strategy is the unique
best response to the other player’s strategy. Note that the reinforcement equilib-
rium is a strict equilibrium for s ∈ (0, s̄1) and the preemptive equilibrium is a strict
equilibrium for s ∈ (s2, s̄2).

Let us first consider the preemptive equilibrium strategy profile k∗ where k∗
1 = 0

and k∗
2 ∈ {z(s), V1

s
}. The following lemma shows that we can construct a sequence

of full support strategy profiles {µn}—such that their best responses lie sufficiently
close to the pure strategy equilibrium—converging to the pure-strategy equilibrium
such that, for each n, the best response to µn lies arbitrarily close to µn itself.

Lemma B.9. For s ∈ (s2, ŝ2), the preemptive equilibrium (k∗
1 = 0, k∗

2 = z(s)) is a
weakly perfect equilibrium.

Proof. Let (δ1, δ2) ∈ (0, 1) × (0, 1) and define a strategy profile µ = (µ1, µ2) such
that µi assigns probability (1 − δi) to k∗

i and distributes the remaining mass δi
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uniformly over [0, K]. Given µ1, player 2’s expected payoff is:

EU2(k2 | µ1) = (1 − δ1)s
max{k2 − V1

s
+ V2

s
, 0} − max{k2 − V1

s
, 0}


+ δ1

K

 ∫ max{k2− V1
s

,0}

0
V2dk1

+
∫ max{k2− V1

s
+ V2

s
,0}

max{k2− V1
s

,0}
((V2 − V1) + s(k2 − k1))dk1

− c(k2). (B.26)

It is obvious that for k2 < V1−V2
s

, player 2’s payoff is strictly decreasing in k2. For
k2 > V1

s
, the term in the first square bracket is constant, whereas the term in the

second square bracket is increasing in k2. Applying (B.6) after substituting G1 for
a uniform distribution over [0, K], the first-order derivative of player 2’s expected
payoff with respect to k2 can be expressed as δ1V2

K
− c′(k2), which is negative for all

δ1 sufficiently close to zero. For k2 ∈ [V1−V2
s

, V1
s

], the expected payoff simplifies to

EU2(k2 | µ1) = (1 − δ1)(sk2 + V2 − V1) + δ1(sk2 + V2 − V1)2

2sK
− c(k2). (B.27)

We now show that for s2 < s < ŝ2, player 2’s best response lies arbitrarily close to
z(s) as δ1 approaches zero. Observe that for k2 ∈ [V1−V2

s
, V1

s
], EU2(k2 | µ1) is strictly

concave and so player 2’s best response uniquely solves the following first-order
condition:

F2(k2, δ1) :=
[
s − c′(k2)

]
+ δ1

[
sk2 + V2 − V1

K
− s

]
= 0. (B.28)

Observe that F2(k2, δ1) is continuous in k2 and z(s) solves F2(k2, 0) = 0. Therefore,
for every ϵ > 0, there exists δ1 = δ1(ϵ) > 0 such that the unique solution of
F2(k2, δ1) = 0 lies within ϵ-distance of z(s), and moreover, δ1(ϵ) → 0 as ϵ → 0.
Additionally, since the left-hand side (B.28) measures the first-order effect only for
k2 ∈ [V1−V2

s
, V1

s
], the solution is indeed the best response if it lies in [V1−V2

s
, V1

s
].

However, since z(s) < V1
s

for s2 < s < ŝ2, we can choose ϵ sufficiently small so that
for such ϵ, the solution to (B.28) is strictly below V1

s
and thus constitutes player 2’s

local best response to µ1.
Finally, this local solution constitutes a global best response for player 2 only

if it yields a strictly positive payoff. Indeed, since the pure-strategy equilibrium is
strict for s2 < s < ŝ2, Proposition 2 gives

M(s) = sz(s) − c(z(s)) > V1 − V2.
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Therefore, for sufficiently small ϵ > 0, the expected payoff to player 2 from the
solution of F2(k2, δ1) = 0 in response to µ1 remains strictly positive.

Next, observe that given µ2, player 1’s expected payoff is:

EU1(k1 | µ2) = (1 − δ2)s
max{k1 − z(s) − V2

s
+ V1

s
, 0} − max{k1 − z(s) − V2

s
, 0}


+ δ2

K

 ∫ max{k1− V2
s

,0}

0
V1dk2 (B.29)

+
∫ max{k1− V2

s
+ V1

s
,0}

max{k1− V2
s

,0}
((V1 − V2) + s(k1 − k2))dk2

− c(k1).

Consider k1 < z(s) − V1−V2
s

, then for s2 < s < ŝ2, k1 − V2
s

< z(s) − V1
s

< 0
and k1 − V2

s
+ V2

s
can be positive but less than z(s). Therefore, the expected

payoff simplifies to δ2(sk1+V1−V2)2

2sK
− c(k1) and the first-order derivative is given by

F1(k1, δ2) := δ2(sk1+V1−V2)
K

− c′(k1). Observe that F1(k1, δ2) is continuous in k1 and
the solution of F1(k1, δ2) = 0 can be made arbitrarily close to zero by suitable choice
of δ2. Specifically, for every ϵ > 0, there exists δ2 = δ2(ϵ) > 0 such that the unique
solution of F1(k1, δ2) = 0 is less than ϵ, and moreover, δ2(ϵ) → 0 as ϵ → 0.

For k1 > z(s) + V2
s

, the term in the first square bracket is constant, whereas
the term in the second square bracket is increasing in k1. Applying (B.5) after
substituting G2 by a uniform distribution over [0, K], the first-order derivative of
player 1’s expected payoff with respect to k1 can be expressed as δ2V1

K
−c′(k1), which

is negative for all k1 > z(s) + V2
s

and for sufficiently small values of δ2.
Finally, for z(s) − V1−V2

s
≤ k1 ≤ z(s) + V2

s
, the expected payoff simplifies to

EU1(k1 | µ2) = (1 − δ2)(sk1 − sz(s) + V1 − V2) + δ2(sk1 + V1 − V2)2

2sK
− c(k1),

which is strictly concave and so player 1’s best response uniquely solves the following
first-order condition:

F̂1(k1, δ2) :=
[
s − c′(k1)

]
+ δ2

[
sk2 + V2 − V1

K
− s

]
= 0. (B.30)

Observe that F̂1(k1, δ2) is continuous in k1 and z(s) solves F̂1(k1, 0) = 0. Therefore,
for every ϵ > 0, there exists δ2 = δ2(ϵ) > 0 such that the unique solution of
F̂1(k1, δ2) = 0 lies within ϵ-distance of z(s), and moreover, δ2(ϵ) → 0 as ϵ → 0.
However, this local solution is not the global solution if it yields a negative payoff
to player 1; then he deviates to the other local solution—which is arbitrarily close
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to zero—obtained in the first case k1 < z(s)− V1−V2
s

. Indeed, since the pure-strategy
equilibrium is strict for s2 < s < ŝ2, Proposition 2 gives

c(z(s)) > V1 − V2,

and EU1(k1 | δ2 = 0, µ2) = V1 − V2 − c(z(s)) < 0. Therefore, for sufficiently small
ϵ > 0, the expected payoff to player 1 from the solution of F̂1(k1, δ2) = 0 in response
to µ2 remains strictly negative.

Combining our analyses of the optimal behaviors of player 1 and player 2, we
can construct a sequence of ϵn ↓ 0 and consider δn = min{δ1(ϵn), δ2(ϵn)} such that
the best response to a strategy profile {µn = (µn

1 , µn
2 )}—where µn

i places a point
mass (1 − δn) on k∗

i (where k∗
1 = 0 and k∗

2 = z(s)) and distributes the remaining
probability δn uniformly over [0, K]—lies within ϵn-distance of µn.

Furthermore, as ϵn → 0, the sequence of strategy profile µn converges to (k∗
1 =

0, k∗
2 = z(s)). It then follows from Theorem B.1 that the pure strategy equilibrium

k∗ is weakly perfect.

By analogous arguments, it can be shown that the preemptive equilibrium (k∗
1 =

0, k∗
2 = V1

s
) is weakly perfect also for s ∈ [ŝ2, s̄2), and the reinforcement equilibrium

is weakly perfect for s ∈ (0, s̄1), since in each case the corresponding pure-strategy
equilibrium is strict. Strictness alone ensures compliance with the weak-perfection
refinement, regardless of the presence of other equilibria.
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